SciELO - Scientific Electronic Library Online

 
vol.78 número170NUMERICAL SIMULATION OF THE INSTABILITY LINE BASED ON LAWS OF PHYSICSADVANCED SPATIAL METRICS ANALYSIS IN CELLULAR AUTOMATA LAND USE AND COVER CHANGE MODELING índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


DYNA

versão impressa ISSN 0012-7353

Resumo

CORREA-TAPASCO, EVER; MORA-FLOREZ, JUAN  e  PEREZ-LONDONO, SANDRA. HYBRID APPROACH FOR AN OPTIMAL ADJUSTEMENT OF A KNOWLEDGE-BASED REGRESSION TECHNIQUE FOR LOCATING FAULTS IN POWER DISTRIBUTION SYSTEMS. Dyna rev.fac.nac.minas [online]. 2011, vol.78, n.170, pp.31-41. ISSN 0012-7353.

This paper is focused in the development of a hybrid approach based on support vector machines (SVMs) which are used as a regression technique and also in the Chu-Beasley genetic algorithm (CBGA) which is used as an optimization technique to solve the problem of fault location. The proposed strategy consists of using the CBGA to adequately select the best configuration parameters of an SVM. As a result of the application of this strategy, a well-suited tool is obtained to relate a set of inputs to a single output in a classical regression task, which is next used to determine the fault distance in power distribution systems, using single end measurements of voltage and current. The proposed approach is initially tested in a simplified regression task using two functions in Â1 and Â2, where the results obtained are highly satisfactory. Next, the selection of the adequate calibration parameters is performed in order to adjust the SVM using a cross validation strategy, where an average error of 5.75 % is obtained. These results show the adequate performance of the proposed methodology which merges SVM and CBGA into one powerful fault locator for application in power distribution systems.

Palavras-chave : fault location; genetic algorithms; power distribution systems; regression; support vector machines.

        · resumo em Espanhol     · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons