SciELO - Scientific Electronic Library Online

 
vol.80 número182A METHODOLOGY FOR KNOWLEDGE MODELING OF FAULT DIAGNOSIS BASED ON PETRI NETSNON-UNIFORM HEATING COMPENSATION FOR SEQUENCES OF THERMAL IMAGES USING MEDIAN FILTERING índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


DYNA

versão impressa ISSN 0012-7353

Resumo

VELASQUEZ HENAO, JUAN DAVID; ZAMBRANO PEREZ, CRISTIAN OLMEDO  e  FRANCO CARDONA, CARLOS JAIME. UNA COMPARACIÓN ENTRE EL SUAVIZADO EXPONENCIAL Y LAS REDES NEURONALES EN LA PREDICCIÓN DE SERIES DE TIEMPO. Dyna rev.fac.nac.minas [online]. 2013, vol.80, n.182, pp.66-73. ISSN 0012-7353.

En este artículo, se compara la precisión de los pronósticos para la aproximación de suavizado exponencial (ES, por su sigla en inglés) y redes neuronales de función de base radial (RBFNN, por su sigla en inglés) cuando se pronostican tres series no lineales de series de tiempo con tendencia y ciclo estacional. Adicionalmente, se consideran las recomendaciones de preprocesar por medio de la eliminación de la tendencia y del ciclo estacional usando diferenciación simple y diferenciación estacional. Finalmente, se considera el uso de la combinación de pronósticos para determinar si hay información complementaria entre los pronósticos individuales de los modelos. La evidencia numérica soporta las siguientes conclusiones: primero, los modelos de ES tienen un mejor ajuste pero un bajo poder predictivo que las RBFNN; la eliminación del ciclo y la tendencia permite que las RBFNN se ajusten y pronostiquen con mayor precisión que las RBFNN entrenadas con el conjunto original de datos; no hay evidencia de complementariedad de información en los pronósticos, tal que, la metodología de combinación de pronósticos no es capaz de predecir con mayor precisión que las RBFNN y la metodología ES.

Palavras-chave : combinación de pronósticos; modelos no lineales; redes neuronales artificiales; serie no lineales de tiempo.

        · resumo em Inglês     · texto em Espanhol     · Espanhol ( pdf )