SciELO - Scientific Electronic Library Online

 
vol.81 número185A refined protocol for calculating air flow rate of naturally-ventilated broiler barns based on CO2 mass balanceBioethanol production by fermentation of hemicellulosic hydrolysates of african palm residues using an adapted strain of Scheffersomyces stipitis índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


DYNA

versão impressa ISSN 0012-7353

Resumo

MEDINA, Miguel A.; RAMIREZ, Juan M.; COELLO, Carlos A.  e  DAS, Swagatam. Use of a multi-objective teaching-learning algorithm for reduction of power losses in a power test system. Dyna rev.fac.nac.minas [online]. 2014, vol.81, n.185, pp.196-203. ISSN 0012-7353.  http://dx.doi.org/10.15446/dyna.v81n185.38309.

This paper presents a multi-objective teaching learning algorithm based on decomposition for solving the optimal reactive power dispatch problem (ORPD). The effectiveness and performance of the proposed algorithm are compared with respect to a multi-objective evolutionary algorithm based on decomposition (MOEA/D) and the NSGA-II. A benchmark power system model is used to test the algorithms' performance. The results of the power losses reduction as well as the performance metrics indicate that the proposed algorithm is a reliable choice for solving the problem.

Palavras-chave : Multi-objective evolutionary algorithm based on decomposition (MOEA/D); Multi-objective Teaching-learning algorithm; Optimal reactive power dispatch.

        · resumo em Espanhol     · texto em Inglês     · Inglês ( pdf )