SciELO - Scientific Electronic Library Online

vol.82 número193Analysis of the partial discharge pulse propagation in the stator winding of a synchronous machineThermal and energy evaluation of a novel polymer-ceramic composite as insulation for a household refrigerator índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados



Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google



versão impressa ISSN 0012-7353


FERNANDEZ-HERNANDEZ, Yumilka B. et al. An improvement to the classification based on the measurement of the similarity quality using fuzzy relations. Dyna rev.fac.nac.minas [online]. 2015, vol.82, n.193, pp.70-76. ISSN 0012-7353.

The learning of classification rules is a classic problem of the automatic learning. The algorithm IRBASIR for the induction of classification rules based on similaridad relations allows to discover knowledge starting from decision systems that contain features with continuous and discrete domains. This algorithm has shown to obtain higher results than other well-known algorithms. In this article, several modifications to this algorithm based on the Fuzzy sets theory are proposed, taking into account the measure quality of similarity. The experimental results show that using the fuzzy sets theory allow to obtain higher results than the original algorithm.

Palavras-chave : classification rules; fuzzy sets; similarity relations.

        · resumo em Espanhol     · texto em Espanhol     · Espanhol ( pdf )