SciELO - Scientific Electronic Library Online

 
vol.83 número198Roasting of sulphide using carbothermal reductionThermal dielectric and Raman studies on the KNO3 compound high-temperature region índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


DYNA

versão impressa ISSN 0012-7353

Resumo

VALENCIA-CARDENAS, Marisol; DIAZ-SERNA, Francisco Javier  e  CORREA-MORALES, Juan Carlos. Multi-product inventory modeling with demand forecasting and Bayesian optimization. Dyna rev.fac.nac.minas [online]. 2016, vol.83, n.198, pp.235-243. ISSN 0012-7353.  http://dx.doi.org/10.15446/dyna.v83n198.51310.

The complexity of supply chains requires advanced methods to schedule companies' inventories. This paper presents a comparison of model forecasts of demand for multiple products, choosing the best among the following: autoregressive integrated moving average (ARIMA), exponential smoothing (ES), a Bayesian regression model (BRM), and a Bayesian dynamic linear model (BDLM). To this end, cases in which the time series is normally distributed are first simulated. Second, sales predictions for three products of a gas service station are estimated using the four models, revealing the BRM to be the best model. Subsequently, the multi-product inventory model is optimized. To define the policies for ordering, inventory, costs, and profits, a Bayesian search integrating elements of a Tabu search is used to improve the solution. This inventory model optimization process is then applied to the case of a gas service station in Colombia.

Palavras-chave : Dynamic Linear Models; Inventory Models; Forecasts; Bayesian Statistics.

        · resumo em Espanhol     · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons