SciELO - Scientific Electronic Library Online

vol.84 número200Evaluation of the stability of a highway slope through numerical modelingMonitoring and control of the multihead weighing process through a modified control chart índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados



Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google



versão impressa ISSN 0012-7353


TORRES-MADRONERO, Maria C.. A comparative study of multiscale representations for spatial-spectral classification of hyperspectral imagery. Dyna rev.fac.nac.minas [online]. 2017, vol.84, n.200, pp.129-134. ISSN 0012-7353.

Hyperspectral remote sensors acquire data coming from hundreds of narrow bands through the electromagnetic spectrum; this allows the terrestrial and maritime surfaces to be characterized for Earth observation. Hyperspectral image processing requires algorithms that combine spatial and spectral information. One way to take full advantage of spatial-spectral data within hyperspectral imagery is to use multiscale representations. A multiscale representation generates a family of images were fine details are systematically removed. This paper compares two multiscale representation approaches in order to improve the classification of hyperspectral imagery. The first approach is based on nonlinear diffusion, which obtains a multiscale representation by successive filtering. The second is based on binary partition tree, an approach inspired in region growing. The comparison is performed using a real hyperspectral image and a supper vector machine classifier. Both representation approaches allowed the classification of hyperspectral imagery to be improved. However, nonlinear diffusion results surpassed those obtained using binary partition tree.

Palavras-chave : nonlinear diffusion; binary partition tree; classification; hyperspectral imagery; multiscale representation; remote sensing.

        · resumo em Espanhol     · texto em Inglês     · Inglês ( pdf )