SciELO - Scientific Electronic Library Online

 
vol.84 número200Effects of shoulder geometry of tool on microstructure and mechanical properties of friction stir welded joints of AA1100 aluminum alloyPedestrian tracking using probability fields and a movement feature space índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


DYNA

versão impressa ISSN 0012-7353

Resumo

RODRIGUEZ-RUEDA, Pedro J.  e  TURIAS-DOMINGUEZ, Ignacio J. A comparison between artificial neuronal networks and classical methods for the prediction of mobility between transport zones. A case study in the Campo de Gibraltar Region (Spain). Dyna rev.fac.nac.minas [online]. 2017, vol.84, n.200, pp.209-216. ISSN 0012-7353.  http://dx.doi.org/10.15446/dyna.v84n200.56571.

Traffic issues are more common every day due to the great technological development of humanity. Therefore, the control is essential to optimize infrastructure and public transport. To achieve this goal, it is necessary to make an estimate of the demand of the mobility. An alternative method, based on Artificial Neural Networks (ANNs), has been analyzed in this work comparing to traditional prediction techniques. The aim is to obtain an estimation procedure using simple, economical input variables which are easy to find. Unlike traditional models. These new models are able to perform a better fitting of input-output mapping. The results are encouraging and therefore the ability of ANNs is shown to estimate mobility between zones.

Palavras-chave : Artificial Neural Network (ANNs); mobility; transport.

        · resumo em Espanhol     · texto em Espanhol     · Espanhol ( pdf )