SciELO - Scientific Electronic Library Online

 
vol.84 número200A comparison between artificial neuronal networks and classical methods for the prediction of mobility between transport zones. A case study in the Campo de Gibraltar Region (Spain)A study of the health implications of mobile phone use in 8-14s índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


DYNA

versão impressa ISSN 0012-7353

Resumo

NEGRI, Pablo  e  GARAYALDE, Damián. Pedestrian tracking using probability fields and a movement feature space. Dyna rev.fac.nac.minas [online]. 2017, vol.84, n.200, pp.217-227. ISSN 0012-7353.  http://dx.doi.org/10.15446/dyna.v84n200.57028.

Retrieving useful information from video sequences, such as the dynamics of pedestrians, and other moving objects on a video sequence, leads to further knowledge of what is happening on a scene. In this paper, a Target Framework associates each person with an autonomous entity, modeling its trajectory and speed by using a state machine. The particularity of our methodology is the use of a Movement Feature Space (MFS) to generate descriptors for classifiers and trackers. This approach is applied to two public sequences (PETS2009 and TownCentre). The results of this tracking outperform other algorithms reported in the literature, which have, however, a higher computational complexity.

Palavras-chave : pedestrian tracking; movement feature space; target framework.

        · resumo em Espanhol     · texto em Inglês     · Inglês ( pdf )