SciELO - Scientific Electronic Library Online

 
vol.85 número205Analysis of the European tourist mines and caves to design a monitoring systemLocal polynomial approximation and intersection of confidence intervals for removing noise of lightning electric field measurements índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


DYNA

versão impressa ISSN 0012-7353

Resumo

MONSALVE-PULIDO, Julián Alberto  e  PARRA-RODRIGUEZ, Carlos Alberto. Characterization of postures to analyze people’s emotions using Kinect technology. Dyna rev.fac.nac.minas [online]. 2018, vol.85, n.205, pp.256-263. ISSN 0012-7353.  http://dx.doi.org/10.15446/dyna.v85n205.69470.

This article synthesizes the research undertaken into the use of classification techniques that characterize people's positions, the objective being to identify emotions (astonishment, anger, happiness and sadness). We used a three-phase exploratory research methodology, which resulted in technological appropriation and a model that classified people’s emotions (in standing position) using the Kinect Skeletal Tracking algorithm, which is a free software. We proposed a feature vector for pattern recognition using classification techniques such as SVM, KNN, and Bayesian Networks for 17,882 pieces of data that were obtained in a 14-person training sample. As a result, we found that that the KNN algorithm has a maximum effectiveness of 89.0466%, which surpasses the other selected algorithms.

Palavras-chave : analysis of emotions; recognition of postures; free software; Kinect, KNN.

        · resumo em Espanhol     · texto em Inglês     · Inglês ( pdf )