SciELO - Scientific Electronic Library Online

 
vol.86 número211Design and manufacturing of an ultrasonic reactor for biodiesel obtaining by transesterificationA clustering algorithm for ipsative variables índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


DYNA

versão impressa ISSN 0012-7353versão On-line ISSN 2346-2183

Resumo

ABELLAN-GARCIA, Joaquín; NUNEZ-LOPEZ, Andrés; TORRES-CASTELLANOS, Nancy  e  FERNANDEZ-GOMEZ, Jaime. Effect of FC3R on the properties of ultra-high-performance concrete with recycled glass. Dyna rev.fac.nac.minas [online]. 2019, vol.86, n.211, pp.84-93. ISSN 0012-7353.  https://doi.org/10.15446/dyna.v86n211.79596.

Ultra-high-performance concrete (UHPC) is the essential innovation in concrete research of the recent decades. However, because of the high contents of cement and silica fume used, the cost and environmental impact of UHPC is considerably higher than conventional concrete. The use of industrial byproducts as supplementary cementitious materials, in the case of recycled glass powder and fluid catalytic cracking catalyst residue (FC3R), as partial substitution of cement and silica fume allows to create a more ecological and cost-efficient UHPC. This research presents a study to determine the possibility of partial substitution of cement by FC3R in a previously optimized mixture of ultra-high-performance concrete with recycled glass. The results demonstrate that compressive strength values of 150 and 151 MPa without any heat treatment can be achieved, respectively, when replacing 11% and 15% of the cement with FC3R, for a determined amount of water and superplasticizer, compared to 158 MPa obtained for the reference UHPC without any FC3R content. The rheology of fresh UHPC is highly decreased by replacing cement particles with FC3R.

Palavras-chave : ultra-high performance concrete; sustainable construction materials; waste management.

        · resumo em Espanhol     · texto em Inglês     · Inglês ( pdf )