SciELO - Scientific Electronic Library Online

 
vol.35 número1Cinética da adsorção de óleo diesel por bioadsorventes de fibras in natura de coco (cocus nucifera) índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Revista ION

versão impressa ISSN 0120-100Xversão On-line ISSN 2145-8480

Resumo

PEREZ-GORDILLO, David Sebastian  e  MANTILLA-GONZALEZ, Juan Miguel. Evaluative analysis of reaction mechanisms to model the combustion of biomass derived gases. Rev. ion [online]. 2022, vol.35, n.1, pp.132-147.  Epub 30-Jul-2022. ISSN 0120-100X.  https://doi.org/10.18273/revion.v35n1-2022009.

A fundamental part in the simulation of combustion processes is to model as accurately as possible the chemical kinetics that take place in the phenomenon. On the other hand, in complex combustion simulations that involve the computational fluid dynamics (CFD) of the system, the computational resource is a critical factor to consider. Based on the above, this study evaluates the performance of four semi-detailed reaction mechanisms (DRM22, C1-C4 from Heghes, GRI 3.0 y Konnov), to model the combustion kinetics of biomass derived syngas in CFD simulations (engines, turbines, burners, among others). The methodology consisted of computational tests to obtain results related to ignition delay. These simulations were carried out in a constant pressure reactor varying different combustion parameters. The results obtained with the semi-detailed mechanisms were compared with those achieved using a detailed mechanism (Westbrook), through the calculation of errors. It was found that the applicability of each kinetic model depends on the process variables analyzed, where the quality of their predictions is always inversely proportional to the hydrogen content in the fuel. It should be noted that the GRI 3.0 mechanism presented the best overall performance.

Palavras-chave : Biomass; Syngas; Combustion; Chemical kinetics; Reaction mechanism; Ignition delay.

        · resumo em Português | Espanhol     · texto em Espanhol     · Espanhol ( pdf )