SciELO - Scientific Electronic Library Online

vol.34 número1New Control Charts Based on the Birnbaum-Saunders Distribution and their ImplementationComparison of Confidence Intervals for the Survival Function in the Presence of Right Censoring índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados



Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google


Revista Colombiana de Estadística

versão impressa ISSN 0120-1751


SANHUEZA, ANTONIO; LEIVA, VÍCTOR  e  LOPEZ-KLEINE, LILIANA. On the Student-t Mixture Inverse Gaussian Modelwith an Application to Protein Production. Rev.Colomb.Estad. [online]. 2011, vol.34, n.1, pp.177-195. ISSN 0120-1751.

In this article, we introduce a mixture inverse Gaussian (MIG) model based on the Student-t distribution and apply it to bacterium-based protein production for food industry. This model is mainly useful to describe data that follow positively skewed distributions and accommodate atypical observations in a better way than its classical version. Specifically, we present a characterization of the MIG-t distribution. In addition, we carry out a hazard analysis of this distribution centered mainly on its hazard rate. Furthermore, we discuss the maximum likelihood method, which produces--in this case--robust parameter estimates. Moreover, to evaluate the potential influence of atypical observations, we produce a diagnostic analysis for the model. Finally, we apply the obtained results to novel bacterium-based protein production data and statistically compare two types of protein producers using the likelihood ratio test based on the MIG-t model as an alternative methodology to the procedures available until now. This fact is very important, since the evaluation of protein production using both constructions allows practitioners to choose the most productive one before the bacterial culture is scaled to an industrial level.

Palavras-chave : Distribution mixture; Length-biased; Likelihood methods; distributions; R computer language.

        · resumo em Espanhol     · texto em Inglês     · Inglês ( pdf )


Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons