SciELO - Scientific Electronic Library Online

vol.68 issue2Application of microencapsulated anthocyanin extracted from purple cabbage in fermented milk drinksScreening of nutritional factors through a Plackett-Burman experimental design during the solubilization of tricalcium phosphate by Penicillium hispanicum author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google


Acta Agronómica

Print version ISSN 0120-2812


MORENO-ARTEAGA, Argemiro José et al. Volumetric spatiality of wood in forest settlement using artificial neural networks with satellite images. Acta Agron. [online]. 2019, vol.68, n.2, pp.142-150. ISSN 0120-2812.

The sustainable agriculture of forest plantations demands the permanent monitoring of the quantity of processed wood, thus becoming difficult to monitor large planted areas by using only manual procedures. Therefore, in this research artificial neural networks (RNA) of multilayer perceptrons, were modeled to estimate the spatial of wood volume in a Eucalyptus-sp plantation located in the state of Mato Grosso del Sur in the Central-West region of Brazil. As input variables in the RNA spectral bands, the textures of the bands obtained with Gray Level Co-occurrence Matrices and vegetation index were used, which were derived from digital satellite image Spot 6. The resulting RNA with the best performance presented accuracy of 93.32% and coefficient of determination of 0.9761. However, this network presented a mean square error of 16.32% (RMSE de 7.85 m3ha-1), but with a unbiased distribution of the residuals. So, the model showed to be suitable to monitor the amount of wood in large areas without overestimating or underestimating the prediction. Compared with different machine learning methods using the same variables, the built network seems to have a higher precision and accuracy. Even in the neuronal models using only spectral bands and vegetation indexes, a better performance was evidenced, showing that the textures contribute in the improvement of predictions.

Keywords : Biomass; dendrometry; remote sensing; multilayer perceptrons; texture.

        · abstract in Spanish     · text in Spanish     · Spanish ( pdf )