SciELO - Scientific Electronic Library Online

 
vol.33 número3Geno-geographic origin of Y-specific STR haplotypes in a sample of Caucasian-Mestizo and African-descent male individuals from ColombiaEarly atherosclerotic lesions and post-mortem serum cholesterol level in a group of Colombian children índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Biomédica

versão impressa ISSN 0120-4157

Resumo

QUIJANO, Sandra Milena et al. Correlation of the t(9;22), t(12;21), and DNA hyperdiploid content with immunophenotype and proliferative rate of leukemic B-cells of pediatric patients with B-cell acute lymphoblastic leukemia. Biomédica [online]. 2013, vol.33, n.3, pp.468-486. ISSN 0120-4157.  https://doi.org/10.7705/biomedica.v33i3.1441.

Introduction: Between 60 and 80% of patients with B-cell acute lymphoblastic leukemia show genetic abnormalities which influence the prognosis of the disease and the biology of the tumor. Objective: To analyze different genetic abnormalities in acute B lymphoblastic leukemia in children, its relationship with the immunophenotype and the proliferative rate compared with normal B cell precursors. Materials and methods: We assessed immunophenotype, DNA content and proliferative rate in 44 samples by flow cytometry, and translocations t(9;22), t(12;21), t(4;11), and t(1;19) by RT-PCR. Using a hierarchical cluster analysis, we identified some immunophenotypic patterns associated to genetic abnormalities when compared with normal B cell precursors. Results: DNA quantification showed that 21% of the cases had high hyperdiploidy and 47.7% has low hyperdiploidy. The presence of hyperdiploidy was associated with increased tumor proliferation and aberrant immunophenotypes, including abnormal expression of CD10, TdT, CD38, and CD45 and an increased size of the lymphoblasts. The presence of t(9;22) and t(12;21) discriminates normal cells from tumor cells with aberrant immunophenotype in the expression of CD19, CD22, CD13, CD33, CD38, CD34, and CD45. Conclusions: The aberrant immunophenotype profile detected in neoplastic cells along with abnormalities in the proliferative rate were significantly associated with DNA hyperdiploidy and clearly distinguished lymphoblasts with t(9;22) and t(12;21) from normal B cell precursors. The identification of these parameters is useful as a tool for classification and monitoring of these patients.

Palavras-chave : Leukemia; lymphoblastic; flow cytometry; bone marrow.

        · resumo em Espanhol     · texto em Espanhol     · Espanhol ( pdf )