Servicios Personalizados
Revista
Articulo
Indicadores
Citado por SciELO
Accesos
Links relacionados
Citado por Google
Similares en SciELO
Similares en Google
Compartir
Revista Integración
versión impresa ISSN 0120-419X
Resumen
CHIMAL-DZUL, Henry y LOPEZ-ANDRADE, C. A.. When is R[x] a principal ideal ring?. Integración - UIS [online]. 2017, vol.35, n.2, pp.143-148. ISSN 0120-419X. https://doi.org/10.18273/revint.v35n2-2017001.
Because of its interesting applications in coding theory, cryptography, and algebraic combinatorics, in recent decades a lot of attention has been paid to the algebraic structure of the ring of polynomials R[x], where R is a finite commutative ring with identity. Motivated by this popularity, in this paper we determine when R[x] is a principal ideal ring. In fact, we prove that R[x] is a principal ideal ring if and only if R is a finite direct product of finite fields.
MSC2010: 13F10, 13F20, 16P10, 13C05.
Palabras clave : Principal ideal ring; polynomial ring; finite rings.