SciELO - Scientific Electronic Library Online

 
vol.35 número2Sobre algunas propiedades asintóticas de polinomios de Hermite clásicos modificados por un factor racional índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Revista Integración

versión impresa ISSN 0120-419X

Resumen

CHIMAL-DZUL, Henry  y  LOPEZ-ANDRADE, C. A.. When is R[x] a principal ideal ring?. Integración - UIS [online]. 2017, vol.35, n.2, pp.143-148. ISSN 0120-419X.  https://doi.org/10.18273/revint.v35n2-2017001.

Because of its interesting applications in coding theory, cryptography, and algebraic combinatorics, in recent decades a lot of attention has been paid to the algebraic structure of the ring of polynomials R[x], where R is a finite commutative ring with identity. Motivated by this popularity, in this paper we determine when R[x] is a principal ideal ring. In fact, we prove that R[x] is a principal ideal ring if and only if R is a finite direct product of finite fields.

MSC2010: 13F10, 13F20, 16P10, 13C05.

Palabras clave : Principal ideal ring; polynomial ring; finite rings.

        · resumen en Español     · texto en Inglés     · Inglés ( pdf )