SciELO - Scientific Electronic Library Online

 
vol.35 número2On some asymptotic properties of classical Hermite polynomials modified by a rational factor índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Revista Integración

versão impressa ISSN 0120-419X

Resumo

CHIMAL-DZUL, Henry  e  LOPEZ-ANDRADE, C. A.. ¿Cuándo R[x] es un anillo de ideales principales?. Integración - UIS [online]. 2017, vol.35, n.2, pp.143-148. ISSN 0120-419X.  http://dx.doi.org/10.18273/revint.v35n2-2017001.

Debido a sus interesantes aplicaciones en teoría de códigos, criptografía y combinatoria algebraica, en décadas recientes se ha incrementado la atención en la estructura algebraica del anillo de polinomios R[x], donde R es un anillo conmutativo finito con identidad. Motivados por esta popularidad, en este artículo determinamos cuándo R[x] es un anillo de ideales principales. De hecho, demostramos que R[x] es un anillo de ideales principales, si y sólo si, R es un producto directo finito de campos finitos.

Palavras-chave : Anillo de ideales principales; anillo de polinomios; anillos finitos.

        · resumo em Inglês     · texto em Inglês     · Inglês ( pdf )