Servicios Personalizados
Revista
Articulo
Indicadores
Citado por SciELO
Accesos
Links relacionados
Citado por Google
Similares en SciELO
Similares en Google
Compartir
Revista Integración
versión impresa ISSN 0120-419Xversión On-line ISSN 2145-8472
Resumen
MONTOYA, Cristhian y ROMERO–LEITON, Jhoana P.. Modelamiento matemático para malaria bajo resistencia y movimiento poblacional. Integración - UIS [online]. 2020, vol.38, n.2, pp.133-163. Epub 30-Jun-2020. ISSN 0120-419X. https://doi.org/10.18273/revint.v38n2-2020006.
En este artículo se presentan dos modelos matemáticos para la enfermedad de la malaria bajo la hipótesis de resistencia. Más precisamente, el primer modelo muestra la interacción entre humanos y mosquitos de una región con presencia de infección, considerando que los humanos son resistentes a la droga antimalárica y los mosquitos resistentes a los insecticidas. En el segundo modelo, se consideran las mismas hipótesis del modelo anterior, y adicionalmente movimiento de ambas poblaciones entre regiones. Para el primer modelo, se establecen condiciones de existencia y estabilidad para las soluciones de equilibrio en términos del número básico de reproducción. Estos resultados revelan la existencia de una bifurcación hacia adelante y la estabilidad global del equilibrio libre de enfermedad (DFE por sus siglas en inglés). Para el segundo modelo, se presenta un enfoque teórico y numérico de análisis de sensibilidad de parámetros. Además, se incorporan el uso de droga antimalárica e insecticidas como estrategias de control, con lo cual se formula un problema de control óptimo. A lo largo de este trabajo, los resultados teóricos se validan mediante simulaciones numéricas usando datos reportados en la literatura.
Palabras clave : Insecticidas; Droga antimalaria; Análisis cualitativo; Estabilidad; Bifurcación.