SciELO - Scientific Electronic Library Online

 
vol.41 issue2The Padovan numbers of the form 6a ± 6b ± 6cA first look at knot theory and Khovanov homology author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Integración

Print version ISSN 0120-419XOn-line version ISSN 2145-8472

Abstract

ACEVEDO, Y.; DUQUE, O. M. L.; HERNANDEZ, D. A. GARCÍA  and  LOAIZA, G.. About Lie algebra classification, conservation laws, and invariant solutions for the relativistic fluid sphere equation. Integración - UIS [online]. 2023, vol.41, n.2, pp.83-101.  Epub Aug 09, 2023. ISSN 0120-419X.  https://doi.org/10.18273/revint.v41n2-2023002.

The optimal generating operators for the relativistic fluid sphere equation have been derived. We have characterized all invariant solutions of this equation using these operators. Furthermore, we have introduced variational symmetries and their corresponding conservation laws, employing both Noether’s theorem and Ibragimov’s method. Finally, we have classified the Lie algebra associated with the given equation.

MSC2010:

35A30, 58J70, 76M60.

Keywords : Optimal algebra; Invariant solutions; Lie algebra classification; Lie symmetry group; Ibragimov’s method; Noether’s theorem; Conservation laws; Variational symmetries.

        · abstract in Spanish     · text in English     · English ( pdf )