Servicios Personalizados
Revista
Articulo
Indicadores
Citado por SciELO
Accesos
Links relacionados
Citado por Google
Similares en SciELO
Similares en Google
Compartir
Revista Integración
versión impresa ISSN 0120-419Xversión On-line ISSN 2145-8472
Resumen
MONTOYA-VEGA, Gabriel. A first look at knot theory and Khovanov homology. Integración - UIS [online]. 2023, vol.41, n.2, pp.103-123. Epub 09-Ago-2023. ISSN 0120-419X. https://doi.org/10.18273/revint.v41n2-2023003.
The mathematical theory of knots studies the embeddings of circles into the space ℝ3. The introduction of homology theories results in complex mathematical structures that generate new research opportunities. In this article, we offer a first look into Khovanov homology, the long exact sequence of Khovanov homology, and we present a summary of the historical origins of the theory. Moreover, we use this sequence to calculate the homology of torus knots T (2, n). One of the the main objectives in publishing this article is to popularize knot theory and Khovanov homology in Colombia and Latin-America in general.
Palabras clave : Knots and links; bracket polynomial; Khovanov homology; long exact sequence of Khovanov homology; torus knots.