SciELO - Scientific Electronic Library Online

 
vol.14 suppl.1Beyond Natural SelectionOn a New Proposal of the Evolutionary Process author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Acta Biológica Colombiana

Print version ISSN 0120-548X

Abstract

MUNOZ-DURAN, JOAO. The Evolutionary Process Evolves: From the Genome to the Sociome and Back. Acta biol.Colomb. [online]. 2009, vol.14, suppl.1, pp.199-216. ISSN 0120-548X.

A review of the main characteristics of biological systems shows that they are irreducible from ontological and epistemological stand points. In contrast, the evolution of these systems is predominantly studied from simplistic, genocentric approaches. An alternative that may conciliate the study of evolution with the main characteristics of biological systems is the hierarchical selection hypothesis, which has been discussed, but not developed enough. I propose that from this hypothesis the following implications can be derived. First, the evolutionary process evolves itself simultaneously with the origin of evolutionary novelties and the establishment of new levels of biological organization. Three levels of selection have evolved: genes, organisms, and groups of organisms that cooperate. Organisms are the preponderant units of selection and since their evolutionary emergence, genes considered as isolated units are no longer direct objects of selection. Groups of organisms that cooperate constitute the most recent level of selection. Its origin is associated with the evolution of parental care, and the emergence of learning and teaching strategies. Second, there are two interdependent ways in which relevant information for the evolutionary process is encoded and transmitted: genome and sociome. I propose the sociome concept as a level in which evolutionary process take place that are complementary to those observed in the genome. I argue that the accumulation of modifications at the sociome level along multiple generations relaxes, strengthens or creates new selective pressures. There is a loop of reciprocal affectation between the genome and sociome that promotes evolution in several taxa.

Keywords : complexity; hierarchical selection; emergent properties; sociome; interaction genomesociome.

        · abstract in Spanish     · text in Spanish     · Spanish ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License