SciELO - Scientific Electronic Library Online

 
vol.27 número1Contamination by urban superficial runoff: accumulated heavy metals on a road surfacePartial oxidation of methane to formaldehyde on MoO3, Fe2O3 and ferromolybdenum catalysts índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Ingeniería e Investigación

versão impressa ISSN 0120-5609

Resumo

LIZARAZO MARRIAGA, Juan Manuel  e  GOMEZ CORTES, José Gabriel. Desarrollo de un modelo de redes neuronales artificiales para predecir la resistencia a la compresión y la resistividad eléctrica del concreto. Ing. Investig. [online]. 2007, vol.27, n.1, pp.11-18. ISSN 0120-5609.

En esta investigación se busca obtener un método para predecir la resistencia a la compresión mediante el peso unitario y la velocidad de pulso ultrasónico usando 41 mezclas de concreto diferentes. El estudio ha sido por la necesidad de obtener un método rápido para predecir la resistencia a la compresión del concreto. De la misma manera, la investigación también busca predecir la resistividad eléctrica del concreto mediante el peso unitario, la velocidad de pulso ultrasónico y la resistencia a la compresión. El modelo para predecir se realizó utilizando una regresión simple y un modelo de redes neuronales. Los resultados mostraron que los modelos de redes neuronales para predecir la resistencia a la compresión y la resistividad eléctrica del concreto funcionan adecuadamente.

Palavras-chave : redes neuronales; resistencia a la compresión del concreto; resistividad del concreto; velocidad de pulso en el concreto.

        · resumo em Inglês     · texto em Espanhol     · Espanhol ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons