Services on Demand
Journal
Article
Indicators
Cited by SciELO
Access statistics
Related links
Cited by Google
Similars in SciELO
Similars in Google
Share
Ingeniería e Investigación
Print version ISSN 0120-5609
Abstract
MARTINEZ SARMIENTO, Fredy Hernán and CASTIBLANCO ORTIZ, Mariela. Evaluación de control neuronal con arquitectura óptima para convertidor DC/DC. Ing. Investig. [online]. 2009, vol.29, n.3, pp.134-138. ISSN 0120-5609.
El control de convertidores DC/DC, topologías utilizadas ampliamente en la reducción activa de contenido armónico para equipo monofásico no lineal de baja potencia, plantea grandes retos de diseño debido a lo complejo del modelo matemático y su característica dinámica altamente no lineal. Técnicas de inteligencia artificial como las redes neuronales, suponen grandes mejoras en el diseño y desempeño final, dada su capacidad de aprender dinámicas complejas y generalizar su comportamiento. La motivación de este trabajo fue la de plantear (y posteriormente evaluar la respuesta dinámica) un lazo de control directo con redes neuronales, que permitiera adicionalmente eliminar elementos de prueba y error en su diseño. Se propone un control directo basado en red neuronal artificial, cuyo diseño se realizó de forma óptima utilizando modelos de búsqueda bioinspirada, esto para optimizar simultáneamente dos aspectos diferentes pero fundamentales de la red: la arquitectura y los pesos de las conexiones. El control es aplicado a un convertidor boost. Los resultados obtenidos permiten observar el desempeño dinámico del esquema, para el cual los tiempos de respuesta y los delta de voltaje en la salida permiten concluir que los criterios seleccionados para el diseño del control son apropiados y representan un aporte en el desarrollo de aplicaciones de control de sistemas conmutados DC/DC.
Keywords : control; conversión de energía eléctrica; convertidores DC/DC; sistemas inteligentes.