SciELO - Scientific Electronic Library Online

 
vol.38 número3Cooperativas de Crédito de Paraná: un análisis de su eficiencia y cambio de productividad índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Ingeniería e Investigación

versión impresa ISSN 0120-5609

Resumen

CHAUDHRY, Imran Ali; ELBADAWI, Isam A-Q.; USMAN, Muhammad  y  TAJAMMAL CHUGTAI, Muhammad. Minimising Total Flowtime in a No-Wait Flow Shop (NWFS) using Genetic Algorithms. Ing. Investig. [online]. 2018, vol.38, n.3, pp.68-79. ISSN 0120-5609.  http://dx.doi.org/10.15446/ing.investig.v38n3.75281.

This paper considers a no-wait flow shop scheduling (NWFS) problem, where the objective is to minimise the total flowtime. We propose a genetic algorithm (GA) that is implemented in a spreadsheet environment. The GA functions as an add-in in the spreadsheet. It is demonstrated that with proposed approach any criteria can be optimised without modifying the GA routine or spreadsheet model. Furthermore, the proposed method for solving this class of problem is general purpose, as it can be easily customised by adding or removing jobs and machines. Several benchmark problems already published in the literature are used to demonstrate the problem-solving capability of the proposed approach. Benchmark problems set ranges from small (7-jobs, 7 machines) to large (100-jobs, 10-machines). The performance of the GA is compared with different meta-heuristic techniques used in earlier literature. Experimental analysis demonstrate that solutions obtained in this research offer equal quality as compared to algorithms already developed for NWFS problems.

Palabras clave : Genetic algorithm (GA); Scheduling; No-wait; Flow shop.

        · resumen en Español     · texto en Inglés     · Inglés ( pdf )