SciELO - Scientific Electronic Library Online

 
vol.43 número3A Study on the Performance and Emission Characteristics of a Diesel Engine Operated with Ternary Higher Alcohol Biofuel BlendsTowards a Theory of Interoperability of Software Systems índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Ingeniería e Investigación

versão impressa ISSN 0120-5609

Resumo

PRIETO, Diego F.; CABALLERO, José L.; APERADOR, Willian A.  e  MARTINEZ, Juan H.. Upgrade and Modification of a Machine for Micro-Abrasion Wear Testing in Simulated Biological Environments with Oscillatory Motion. Ing. Investig. [online]. 2023, vol.43, n.3, pp.1-.  Epub 24-Abr-2024. ISSN 0120-5609.  https://doi.org/10.15446/ing.investig.95685.

Aiming to evaluate the useful life of biomaterials used in joint prostheses, this study performed different wear tests in stainless steel 316L, a biomaterial used in hip joint replacements. The tests were carried out in a dry medium, with the help of an equipment that was improved regarding some of its characteristics and allows conducting wear tests via the contact of two bodies, one of them being the biomaterial under study and the other one a sphere of a harder material. For the evaluation, a device was developed to change the rotation of the sphere, varying the angle it traveled and the frequency with which it did it. Once the improvements were made to the aforementioned equipment, tests were conducted which involved obtaining wear tracks in order to observe the surface morphology through scanning electron microscopy (SEM) and to measure the length and the width of the tracks, with which the biomaterial wear coefficient was obtained for each case studied. In these tests, the wear coefficient showed variations with respect to the sphere's angle of travel.

Palavras-chave : wear; biomaterial; scanning electron microscopy; reciprocating motion.

        · resumo em Espanhol     · texto em Inglês     · Inglês ( pdf )