SciELO - Scientific Electronic Library Online

 número49Particulate matter concentrations at public schools located near major urban roads in Bogota, Colombia: a pilot studyVermicomposting of biological sludge for coliforms reduction índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados



Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google


Revista Facultad de Ingeniería Universidad de Antioquia

versão impressa ISSN 0120-6230
versão On-line ISSN 2422-2844


BERNAL LOPEZ, Susan et al. Modeling of the compressive strength of alternative concretes using the response surface methodology. Antioquia [online]. 2009, n.49, pp.112-123. ISSN 0120-6230.

In this paper is to present the compressive strength reported by alternative concrete at ages of curing of 7, 28, 90 and 180 days. These materials were produced applying alkaline activation processes to binary systems based on granulated-blast furnace slag (GBFS) and high purity metakaolin (MK). As alkali-activator a waterglass solution (Na2SiO3.nH2O + NaOH) was used and its dosages were adjusted in order to get a SiO2/Al2O3 molar ratio between 3.6 and 4.4. The results at 28 days of curing were analyzed through the statistical methodology of response surface (M.S.R). As study factors have been considered: the amount of MK into the binder (CMK) and the SiO2/Al2O3 molar ratio in the binder (Rm). From the proposed statistical model the compressive strength contours, as function of the binder variables, are identified and it is predicted that concretes elaborated from alternative binders with a GBFS/(GBFS+MK) ratio of 0.9 and Rm of 4.2, it is possible to obtain compressive strengths up to 74 MPa. It important stand out that concrete composed by binary systems of GBFS/MK to develop compressive strengths up to 56 MPa at 7 days of curing and up to 80 MPa at 180 days of curing, which is expected for high mechanical performance materials.

Palavras-chave : Granulated-blast furnace slag; metakaoline; alkaline activated binders; compressive strength; response surface methodology.

        · resumo em Espanhol     · texto em Espanhol


Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons