SciELO - Scientific Electronic Library Online

 
 número59Far field from near field measurements: An approach to solve the inverse problem of electromagnetic radiation via genetic algorithmsSolving the traffic assignment problem using real data for a segment of Medellin's transportation network índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Revista Facultad de Ingeniería Universidad de Antioquia

versão impressa ISSN 0120-6230
versão On-line ISSN 2357-53280

Resumo

MORENO-IBARRA, Marco et al. Semantic assessment of similarity between raster elevation datasets. Rev.fac.ing.univ. Antioquia [online]. 2011, n.59, pp.37-46. ISSN 0120-6230.

This paper describes a method to assess the similarity between digital elevation models (DEM), based on the comparison of the landforms. The method attempts to mimic the one commonly used by human beings, which consists of comparisons among the shapes that a human subject identifies in the landscape. To do so, semantic similarity measurements are applied over a hierarchy of concepts. Our method is composed of two stages: the Geomorphometric Analysis and the Semantic Analysis. The first stage aims to represent the topographic properties using one of the concepts of the hierarchy, depending on an analysis of the DEM. The second stage consists of comparisons among the concepts that characterize the landscape using a measure of semantic similarity. In this stage, two levels of semantic analysis are defined: local and global. The advantage of our method is that the interpretation of the results is simplified by means of a semantic processing.

Palavras-chave : Semantic similarity; DEM; ontology; geomorphometric analysis; GIS.

        · resumo em Espanhol     · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons