SciELO - Scientific Electronic Library Online

 
 número84Influence of the molecular weight of polymer, solvents and operational condition in the electrospinning of polycaprolactoneEffect of surface hardness and roughness produced by turning on the torsion mechanical properties of annealed AISI 1020 steel índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Revista Facultad de Ingeniería Universidad de Antioquia

versão impressa ISSN 0120-6230

Resumo

KOLANJIAPPAN, Velmurugan. Reduction of amine and biological antioxidants on NO x emissions powered by mango seed biodiesel. Rev.fac.ing.univ. Antioquia [online]. 2017, n.84, pp.46-54. ISSN 0120-6230.  https://doi.org/10.17533/udea.redin.n84a06.

This study scrutinizes the influence of amine and biological antioxidants on reduction of NOx emissions in a diesel engine fueled with B100 (100vol.% mango seed methyl ester) and B20 (20 vol.% mango seed methyl ester and 80 vol.% diesel fuel blend). Three amine antioxidants, p-phenylenediamine (PPD), Ethylendiamine (EDA) and N,N’-diphenyl-1,4-phenylenediamine (DPPD) and three biological antioxidants, dichloromethane (DCM), alpha tocopherol acetate (α-T) and L-ascorbic acid (L-asc.acid) are tested in a kirloskar-make single cylinder four-stroke water cooled diesel engine of 5.9 KW rated power. There are five concentrations used in the antioxidant mixture of biodiesel blends. i.e., 0.005%-m, 0.010%-m, 0.025%-m, 0.05%-m and 0.1%-m. Where, %-m is the molar concentration employed in the antioxidant mixture. Results show that consequential reduction in NOx could be acquired by the accession of antioxidant additive DPPD with the 0.025% concentration from B20 fuel by 15.4% and B100 fuel by 39%. The DPPD additive increased the CO emissions over 7.42% for B100 fuel and 6.44% for B20 fuel. The biological antioxidant DCM exhibits 0.235 g/kWhr for B100 fuel and 0.297 g/kWhr for B20 fuel. Smoke emission is found to have increased with the addition of antioxidants. Slight increase in brake thermal efficiency (0.91%) is accomplished with the addition of antioxidants at full load. The experimental results are compared with analysis of variance and the result is merely the same as to that of experimentation.

Palavras-chave : Biodiesel; NOx reduction; DPPD; mango seed oil; prompt NO.

        · resumo em Espanhol     · texto em Inglês     · Inglês ( pdf )