SciELO - Scientific Electronic Library Online

 
 issue95Projecting the future of Ayapel Cienaga: A hydroecologic analysis under climate change scenariosComparative analysis of drying coffee beans using microwave and conventional oven author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Facultad de Ingeniería Universidad de Antioquia

Print version ISSN 0120-6230On-line version ISSN 2422-2844

Abstract

ARBELAEZ PEREZ, Oscar Felipe et al. Gas phase synthesis of dimethyl carbonate from CO2 and CH3OH over Cu-Ni/AC. A kinetic study. Rev.fac.ing.univ. Antioquia [online]. 2020, n.95, pp.88-99. ISSN 0120-6230.  https://doi.org/10.17533/udea.redin.20190941.

The catalytic activity for dimethyl carbonate formation from carbon dioxide and methanol over mono and bimetallic Cu:Ni supported on activated carbon is presented. Bimetallic catalysts exhibit higher catalytic activity than the monometallic samples, being Cu:Ni-2:1 (molar ratio) the best catalyst; X-Ray diffraction, transmission electron microscopy, and metal dispersion analysis provided insight into the improved activity. In situ FT-IR experiments were conducted to investigate the mechanism of formation of dimethyl carbonate from methanol and carbon dioxide over Cu-Ni:2-1. The kinetics of the direct synthesis of dimethyl carbonate in gas phase over Cu:Ni-2:1 supported on activated carbon catalyst was experimentally investigated at 12 bar and temperatures between 90 °C and 130 °C, varying the partial pressures of CO2 and methanol. Experimental kinetic data were consistent with a Langmuir-Hinshelwood model that included carbon dioxide and methanol adsorption on catalyst actives sites (Cu, Ni and Cu-Ni), and the reaction of adsorbed CO2 with methoxi species as the rate determining step. The estimated apparent activation energy was 94.2 kJ mol-1.

Keywords : Methanol; catalysts; reaction mechanism; reaction rate; In situ FT-IR analysis.

        · abstract in Spanish     · text in English     · English ( pdf )