SciELO - Scientific Electronic Library Online

 
 issue98Nonintrusive energy disaggregation by detecting similarities in consumption patterns author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Facultad de Ingeniería Universidad de Antioquia

Print version ISSN 0120-6230On-line version ISSN 2422-2844

Abstract

VASQUEZ-VARELA, Luis R.  and  GARCIA-OROZCO, Francisco J.. An overview of asphalt pavement design for streets and roads. Rev.fac.ing.univ. Antioquia [online]. 2021, n.98, pp.10-26. ISSN 0120-6230.  https://doi.org/10.17533/udea.redin.20200367.

Pavements constitute a geotechnical problem since they are built on the ground and with materials obtained from it: untreated, such as soils and rocks, and processed as hydraulic and bituminous binders; consequently, a geotechnical framework is useful to describe their constitutive elements. The design of asphalt pavements for streets and roads evolved from empiric to mechanistic-empiric (M-E) procedures throughout the 20th century. The mechanistic-empiric method, based on layered elastic theory, became a common practice with the publication of separate procedures by Shell Oil, Asphalt Institute, and French LCPC, among others. Since its origin, the M-E procedure can consider incremental pavement design but, only until the beginning of the 21st century, the computational power became available to practicing engineers. American MEPDG represents the state-of-the-art M-E incremental design procedure with significant advantages and drawbacks, the latter mainly related to the extensive calibration activities required to assure a proper analysis and design according to subgrade, climate, and materials at a particular location and for an intended level of reliability. Perpetual pavements are a subset of M-E designed pavements with a proven history of success for the conditions where they are warranted. No design method, either the most straightforward empirical approach or the most elaborated incremental mechanistic one, is appropriate without proper knowledge about the fundamental design factors and calibration of the performance models for each distress mode upon consideration.

Keywords : Asphalt pavement; pavement design; perpetual pavement; incremental design; MEPDG.

        · abstract in Spanish     · text in English     · English ( pdf )