SciELO - Scientific Electronic Library Online

 
vol.25 issue2Optimizing bulb onion (Allium cepa) production and quality through magnesium and micronutrient (B, Zn, and Mn) balanced nutrition in the Upper Chicamocha River Valley, Boyacá*Sistemas para el suministro de servicios a usuarios de recursos naturales: enfoque, funciones de información y comunicación y consideraciones de política author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Agronomía Colombiana

Print version ISSN 0120-9965

Abstract

ROVEDA, Gabriel  and  POLO, Cristina. Mechanisms of maize adaptation associated with Glomus spp. in soils with low phosphorus availability. Agron. colomb. [online]. 2007, vol.25, n.2, pp.349-356. ISSN 0120-9965.

Phosphorus deficiency is a major limitation to agricultural productivity in tropical regions. This research was addressed to study the mechanisms of maize adaptation in relation to Glomus spp. The research was conducted under controlled conditions in the laboratories of Corpoica, Colombia. The experimental design consisted in completely randomized blocks with six treatments and six replicates: three treatments with different levels of available phosphorus in soil (1, 40 y 100 mg·kg-1) and the other three with the same P levels plus Glomus spp. The experimental results confirmed a reduction in leaf area and dry matter related to low P levels in soil at 20 days after seedling emergence. As an adaptation mechanism for P deficiency, the seedlings transferred the carbohydrates to the roots at the expense of leaves, thus, modifying the balance of dry matter. This mechanism was evident 10 days after the stress application. Plants associated with Glomus spp. had the highest growth rates, mineral nutrition (N, K. P, Ca, Mg, and S), and sugar concentration in tissue, due to the importance of P in the synthesis of carbohydrates. Plants associated with mycorrhizal fungus increased the protein levels in tissue when amended with 1 and 40 mg·kg-1 of P in soil. The results suggest that Glomus spp. contributed to the synthesis of stress proteins because of soil phosphorus deficiency. The stress allows the differential expression of genetic information in the synthesis of new proteins called mycorrhizines, which are probably involved in the adaptation mechanisms of plants to stress.

Keywords : tropical soils; phosphorous deficiency; mycorrhizal fungus; protein synthesis.

        · abstract in Spanish     · text in Spanish     · Spanish ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License