SciELO - Scientific Electronic Library Online

 
vol.39 número1Effect of a mix of oligogalacturonides on symbiotic nitrogen fixation in common beanDevelopment of soybean plants using a substrate based on green coconut fiber índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Agronomía Colombiana

versão impressa ISSN 0120-9965

Resumo

SANTOS DE ASSIS, Wellyton et al. Effects of swine manure biochar on sorption equilibrium of cadmium and zinc in sandy soils. Agron. colomb. [online]. 2021, vol.39, n.1, pp.37-46.  Epub 10-Set-2021. ISSN 0120-9965.  https://doi.org/10.15446/agron.colomb.v39n1.90918.

Swine manure is an agricultural waste that can increase soil fertility. However, this residue has a high content of heavy metals, particularly zinc (Zn) and cadmium (Cd), that are not only toxic to plants and soil organisms but they also pose a great threat to human health due to the potential accumulation of these metals through the food chain. Transforming swine manure into biochar and adding it to soils can improve the soil's capacity to retain heavy metals. The main objective of this research was to study the capacity of sandy soils mixed with different doses of swine manure biochar (SMB) to retain Cd and Zn as well as to evaluate the sorption equilibrium of these metals. Sorption essays were performed by adding solutions of Zn (ZnCl2) or Cd (CdCl2) at different concentrations (0, 2.5, 5, 10, 50 and 100 mg L-1) to soil samples mixed with different doses of SMB (0, 0.25, 0.75, 1.5, and 3.0 % (w/w)). The data were modelled using both Langmuir and Freundlich adsorption isotherm models to describe the adsorption processes. The data were best represented by the Langmuir model (R2>0.97), indicating a mono-layer sorption to the surface. Results showed that sorption capacity of Zn and Cd increased with the dose of SMB, improving metal retention. The Langmuir constant (KL) for soil without SMB for Cd and Zn were 0.01 L mg-1 and 0.05 L mg-1, respectively. With the highest dose of SMB, KL increased to 9.86 L mg-1 and 1.26 L mg-1 for Cd and Zn, respectively. Results suggest that SMB has the potential to mitigate Zn and Cd contamination of sandy soils.

Palavras-chave : pyrolized carbon; agricultural wastes; sorption; heavy metals.

        · resumo em Espanhol     · texto em Inglês     · Inglês ( pdf )