SciELO - Scientific Electronic Library Online

 
vol.17 número2INCIDÊNCIA DE PNEUMONÍA ASSOCIADA À VENTILAÇÃO MECÂNICA EM DOENTES COM TRAUMA INTERNADOS NA UNIDADE TERAPIA INTENSIVA DO HOSPITAL MILITAR CENTRALTRATAMENTO DA GOTA AGUDA índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Revista Med

versão impressa ISSN 0121-5256versão On-line ISSN 1909-7700

Resumo

CARRETERO, CONSTANZA et al. BIOCOMPATIBILITY EVALUATION OF CARBONATED APATITE OF DRY SYNTHESIS THROUGH PORCINE OSTEOPROGENITORS CULTURE. rev.fac.med [online]. 2009, vol.17, n.2, pp.231-244. ISSN 0121-5256.

The development of new materials for bone regeneration constitutes a challenge for biomedical sciences, especially when it is desirable to design synthetic materials that simulate the most the composition of natural bone. In this work biocompatibility of carbonated apatite (CAp) was evaluated. CAp was prepared through mechano-chemical mixing, compression and sintered at high temperature (referred as dry synthesis) of powdered precursors. This ceramic was then used as a substrate for the culture of porcine osteogeprogenitors. Cells were obtained from the bone marrow of adult porcine just after sacrifice by series of dilutions. Cells were then cultured onto culture plates or onto CAp, with and without addition of known differentiation osteogenic factors. Cultures were carried out for 45 days during which the doubling time of the culture was determined as well as the osteoconductivty of CAp, by means of determining some biochemical and molecular markers. A primary culture of porcine bone marrow osteoprogenitor was established and was used for the in vitro evaluation of a ceramic material synthetised by solid state reaction. The potential use of the material as a substitute for natural bone implant was explored, by analysing its osteoconductive capacity, through light and electron microscopy and expression of biochemical and molecular markers, such as the expression of alkaline phosphatase, calcium deposition and xylenol orange accumulation, concomitant with detection of Runx2, osteocalcin and osteopontin.

Palavras-chave : bioceramics; carbonated apatite; mesenchymal stem cells; bone marrow.

        · resumo em Português | Espanhol     · texto em Espanhol     · Espanhol ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons