SciELO - Scientific Electronic Library Online

 
vol.9 issue2Synthesis and characterization of Pr2S3 binary compoundThermodynamic study of the leaching of recycled lead with sodium citrate. author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Ciencia en Desarrollo

Print version ISSN 0121-7488

Abstract

MAYOR-RIVERA, Angélica María; ARAGON-MURIEL, Alberto  and  POLO-CERON, Dorian. Synthesis, antibacterial activity and interaction of DNA with lanthanide- β -cyclodextrin inclusion complexes. Ciencia en Desarrollo [online]. 2018, vol.9, n.2, pp.99-117. ISSN 0121-7488.

In this work, lanthanide complexes were synthesized starting from the corresponding La (III), Ce (III), Sm (III) and Yb (III) chlorides and cinnamate ligands which present bidentate coordination between the carboxyl group of the ligand and the lanthanide metal. These compounds were used as hosts of β-cyclodextrin to obtain new inclusion complexes by a co-precipitation method using N,N-dimethylformamide as solvent. The inclusion products were characterized by IR-ATR spectroscopy, Raman, UV-vis, 1H and 13C NMR, XRD, TGA-DSC, elemental analysis and EDTA complexometry. Antibacterial activity tests were performed using six ATTC strains (S. aureus ATCC 25923, S. aureus ATCC 29213, E. coli ATCC 25922, P. aeruginosa ATCC 27853, S. Typhimurium ATCC 14028 and K. pneumoniae ATCC BAA-2146) by the microdilution method with Mueller-Hinton broth. The results of the biological activity for the lanthanide complexes showed the synergistic effect between the lanthanide cation and the cinnamate ligand. For the inclusion complexes, a decrease of the minimum inhibitory concentration (MIC) was observed with respect to the initial lanthanide complexes. The results obtained with the bovine thymus DNA and the plasmid pBR322 DNA allow to propose an electrostatic interaction between the evaluated complexes and the molecular structure of the DNA.

Keywords : antibacterial activity; inclusion complexes; interaction with DNA; lanthanide complexes.

        · abstract in Spanish     · text in Spanish     · Spanish ( pdf )