SciELO - Scientific Electronic Library Online

 
vol.11 issue1EVALUATION OF PERFORMANCE AND EARLY DEGRADATION OF A 180.8 KWP ROOFTOP ON A GRID-CONNECTED PHOTOVOLTAIC SYSTEM IN A COLOMBIAN TROPICAL REGION ENVIRONMENT author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


CT&F - Ciencia, Tecnología y Futuro

Print version ISSN 0122-5383On-line version ISSN 2382-4581

Abstract

NINO-GOMEZ, Jhorman-Alexis et al. ULTRAVIOLET RADIATION TO CONTROL BACTERIA IN OIL WELL INJECTION WATER. C.T.F Cienc. Tecnol. Futuro [online]. 2021, vol.11, n.1, pp.5-9.  Epub Sep 28, 2021. ISSN 0122-5383.  https://doi.org/10.29047/01225383.191.

Biocorrosion is a phenomenon that strongly affects the integrity of the materials used in the oil and gas industry. Different types of biocides are currently used to control bacteria in industrial water; however, they have disadvantages such as microbial resistance to these chemical compounds and possible impact on biodiversity due to eventual contamination of natural water. There are several alternatives for the elimination or control of bacteria, among which one is the use of type C ultraviolet (UV-C) radiation. Nevertheless, the use of these micro-organism removal systems could be affected by water quality and its efficiency can be improved by using LED diodes of lower energy consumption and greater versatility in exposure to high temperatures. This work was aimed to evaluate the use of such radiation as a strategy for the control and/or elimination of sulfate reducing bacteria (SRB), and acid producing bacteria (APB) present in both corrosion and souring processes. For this purpose, injection water from oil and gas industry and a dynamic system which flow variation enabled the evaluation of different water exposure times to UV-C light (120 minutes) were used. Efficiencies ranging between 99-100% were achieved in the elimination of SRB and APB from produced water measured by two different techniques, selective culture media for these microbial populations, and qPCR detecting a specific gene from the SRB population.

Keywords : UV-c radiation; Water disinfection; Biocides; Sulfate-reducing bacteria.

        · abstract in Spanish     · text in English     · English ( pdf )