SciELO - Scientific Electronic Library Online

 
vol.17 número3Efecto de la edad del material parental y del tipo de explante en el cultivo in vitro de Cedrela montana Moritz ex TurczVirulencia, producción y desplazamiento de nematodos entomopatógenos sobre larvas del picudo de la guayaba Conotrachelus psidii Marshall: (Coleoptera: Curculionidae) en laboratorio índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Universitas Scientiarum

versión impresa ISSN 0122-7483

Resumen

PABON, German  y  AMZEL, L. Mario. Unfolding Ubiquitin by force: water mediated H־bond destabilization. Univ. Sci. [online]. 2012, vol.17, n.3, pp.273-281. ISSN 0122-7483.

Using the "pull and wait" (PNW) simulation protocol at 300 K, we studied the unfolding of a ubiquitin molecule by force. PNW was implemented in the CHARMM program using an integration time step of 1 fs and a uniform dielectric constant of 1. The ubiquitin molecule, initially solvated, was put under mechanical stress, exerting forces from different directions. The rupture of five hydrogen bonds between parallel strands β1 and β5 takes place during the extension from 13 to 15 Å, defines a mechanical barrier for unfolding and dominates the point of maximum unfolding force. The simulations described here show that given adequate time, a small applied force can destabilize those five H-bonds relative to the bonds that can be created to water molecules; allowing the formation of stable H-bonds between a single water molecule and the donor and acceptor groups of the interstrand H-bonds. Thus, simulations run with PNW show that the force is not responsible for "ripping apart" the backbone H-bonds; it merely destabilizes them making them less stable than the H-bonds they can make with water. Additional simulations show that the force necessary to destabilize the H-bonds and allow them to be replaced by H-bonds to water molecules depends strongly on the pulling direction. By using a simulation protocol that allows equilibration at each extension we have been able to observe the details of the events leading to the unfolding of ubiquitin by mechanical force.

Palabras clave : H-bond; molecular dynamics; PNW; mechanical unfolding.

        · resumen en Español | Portugués     · texto en Inglés     · Inglés ( pdf )