SciELO - Scientific Electronic Library Online

 
vol.23 número1Metabólitos ativos de Rollinia mucosa (Jacq.) Baillon (Annonaceae) como agentes de biocontrole alternativos contra Corythucha gossypii (Fabricius): um inseto-pragaNanopartículas de dióxido de titânio e nitroprussiato de sódio aliviam os efeitos adversos do estresse por cádmio na germinação e no crescimento do trigo (Triticum aestivum L.) índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Universitas Scientiarum

versão impressa ISSN 0122-7483

Resumo

CASTILLO ARTEAGA, Roger David et al. Polyhydroxyalkanoate biosynthesis by oxalotrophic bacteria from high Andean soil. Univ. Sci. [online]. 2018, vol.23, n.1, pp.35-59. ISSN 0122-7483.  https://doi.org/10.11144/javeriana.sc23-1.pbbo.

Oxalate is a highly oxidized organic acid anion used as a carbon and energy source by oxalotrophic bacteria. Oxalogenic plants convert atmospheric CO2 into oxalic acid and oxalic salts. Oxalate-salt formation acts as a carbon sink in terrestrial ecosystems via the oxalate-carbonate pathway (OCP). Oxalotrophic bacteria might be implicated in other carbon-storage processes, including the synthesis of polyhydroxyalkanoates (PHAs). More recently, a variety of bacteria from the Andean region of Colombia in Narino have been reported for their PHA-producing abilities. These species can degrade oxalate and participate in the oxalate-carbonate pathway. The aim of this study was to isolate and characterize oxalotrophic bacteria with the capacity to accumulate PHA biopolymers. Plants of the genus Oxalis were collected and bacteria were isolated from the soil adhering to the roots. The isolated bacterial strains were characterized using biochemical and molecular biological methods. The consumption of oxalate in culture was quantified, and PHA production was monitored in batch fermentation. The polymeric composition was characterized using gas chromatography. Finally, a biosynthetic pathway based on our findings and on those from published sources is proposed. Strains of Bacillus spp. and Serratia sp. were found to metabolize calcium oxalate and synthesize PHA.

Palavras-chave : oxalotrophic bacteria; polyhydroxyalkanoates; 16S rRNA gene; gas chromatography; biosynthetic pathway in silico.

        · resumo em Português | Espanhol     · texto em Inglês     · Inglês ( pdf )