SciELO - Scientific Electronic Library Online

 
vol.23 issue3Cellulases production on paper and sawdust using native Trichoderma asperellum author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Universitas Scientiarum

Print version ISSN 0122-7483

Abstract

BLANCO-VARGAS, Andrea et al. A novel textile wastewater treatment using ligninolytic co-culture and photocatalysis with TiO2. Univ. Sci. [online]. 2018, vol.23, n.3, pp.437-464. ISSN 0122-7483.  https://doi.org/10.11144/javeriana.sc23-3.antw.

Textile industries produce effluent wastewater that, if discharged, exerts a negative impact on the environment. Thus, it is necessary to design and implement novel wastewater treatment solutions. A sequential treatment consisting of ligninolytic co-culture with the fungi Pleurotus ostreatus and Phanerochaete crhysosporium (secondary treatment) coupled to TiO2 /UV photocatalysis (tertiary treatment) was evaluated in the laboratory in order to discolor, detoxify, and reuse textile effluent wastewater in subsequent textile dyeing cycles. After 48 h of secondary treatment, up to 80% of the color in the wastewater was removed and its chemical and biochemical oxygen demands (COD, and BOD5) were abated in 92% and 76%, respectively. Laccase and MnP activities were central to color removal and COD and BOD5 abatement, exhibiting activity values of 410 U L-1 and 1 428 U L-1, respectively. Subjecting wastewater samples to 12 h of tertiary treatment led to an 86% color removal and 73% and 86% COD and BOD5 abatement, respectively. The application of a sequential treatment for 18 h improved the effectiveness of the wastewater treatment, resulting in 89% of color removal, along with 81% and 89% COD and BOD5 abatement, respectively. With this sequential treatment a bacterial inactivation of 55% was observed. TiO2 films were reused continuously during two consecutive treatment cycles without thermic reactivation. Removal percentages greater than 50% were attained. Acute toxicity tests performed with untreated wastewater led to a lethality level of 100% at 50% in Hydra attenuata and to a growth inhibition of 54% at 50% in Lactuca sativa. Whereas sequentially treated wastewater excreted a 13% lethality at 6.25% and an inhibition of 12% at 75% for H. attenuata and L. sativa, respectively. Finally, sequentially treated wastewater was reused on dyeing experiments in which 0.86 mg g-1 adsorbed dye per g of fabric, that is equivalent to 80% of dye adsorption.

Keywords : Ligninolytic co-culture; photocatalysis with TiO2; textile wastewater.

        · abstract in Spanish | Portuguese     · text in English     · English ( pdf )