SciELO - Scientific Electronic Library Online

 
vol.19 issue1Digital lensless holographic microscopy and applicationsQualitative analysis for demand response impact on distribution system rates author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Ingeniería y competitividad

Print version ISSN 0123-3033

Abstract

CARDENA-PEREZ, Yesica C.; VERA-GRAZIANO, Ricardo; MUNOZ-PRIETO, Efrén d. J.  and  GOMEZ-PACHON, Edwin Y.. Preparation and characterization of scaffold nanofibers by electrospinning, based on chitosan and fibroin from Silkworm (Bombyx mori). Ing. compet. [online]. 2017, vol.19, n.1, pp.139-151. ISSN 0123-3033.

Here we present a study on the preparation of scaffolding for nanofibers composed of chitosan (QS) and fibroin from cocoon silkworm (Bombyx mori) (FGS) for its potential use in biomedicine. The scaffolds conformed by nanofibers were prepared from different mixtures of QS and FGS. They were characterized with analytical techniques such as scanning electron microscopy-SEM, infrared spectroscopy-FTIR, X-ray diffraction-XRD, Thermogravimetric Analysis-TGA, Differential Scanning Calorimetry-DSC and Citocompatibility tests, to determine its morphology, functional groups, thermal transitions, and cell viability of the scaffolding QS/FGS. Nanofibers of different diameters of QS/FGS (8-177 nm) were obtained and compared with the fibers of cocoons (22-36 µm) and fibroin (7-13 µm). The best scaffolds were achieved from a physical mixture with a weight ratio QS: FGS (1:3) dissolved in trifluoroacetic acid under the following electrospinning parameters. Voltage: 20 kV, injection flow: 0.5 ml/h, needle-collector distance: 12 cm, relative humidity: 28% Temperature: 25 ° C. It was determined that the scaffolding QS/FGS possessed fibers with nanometric diameters less than 200 nm, which allow optimal cell adhesion and thermal stability at the application site, with a view to control the degradation of the scaffold. Thermal analyses, supplemented with XRD studies reveal the internal structure of the fibers. Besides Cytocompatibility test on prepared cell scaffolds, it indicates that the integrity requirement was achieved and the necessity to control the pH to achieve an increased cell viability. The results show that nanofibers QS/FGS can be a good candidate for tissue engineering in biomedical applications such as scaffolds.

Keywords : Antibacterial activity; chitosan; electrospinning; nanofibers.

        · abstract in Spanish     · text in English     · English ( pdf )