SciELO - Scientific Electronic Library Online

 
vol.25 issue112¿QUÉ TAN BUENOS SON LOS PATRONES DEL IGBC PARA PREDECIR SU COMPORTAMIENTO?: UNA APLICACIÓN CON DATOS DE ALTA FRECUENCIAUN ANÁLISIS DE CONTENIDO DE LAS PUBLICACIONES DEL CONGRESO LATINOAMERICANO Y DEL CARIBE SOBRE ESPÍRITU EMPRESARIAL author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Estudios Gerenciales

Print version ISSN 0123-5923

Abstract

VELASQUEZ, JUAN DAVID; FRANCO, CARLOS JAIME  and  GARCIA, HERNÁN ALONSO. UN MODELO NO LINEAL PARA LA PREDICCIÓN DE LA DEMANDA MENSUAL DE ELECTRICIDAD EN COLOMBIA*. estud.gerenc. [online]. 2009, vol.25, n.112, pp.37-54. ISSN 0123-5923.

A non-linear model for forecasting the monthly demand for electricity in Colombia This article provides a comparison of the performance of an ARIMA model, a multilayer perceptron, and an autoregressive neural network for forecasting the monthly demand for electricity in Colombia for the following month. The available data were divided into two different sets, i.e. one set for estimating the model parameters, and the other for evaluating the forecast ability outside the range of the sample calibration data. The results show that the autoregressive neural network is able to forecast the demand more accurately than the other two models when the total available data are considered.

Keywords : Demand; forecast; neural networks; ARIMA.

        · abstract in Spanish | Portuguese     · text in Spanish     · Spanish ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License