SciELO - Scientific Electronic Library Online

 
vol.23 issue48Agro-Industrial Potential of the Mandarina Epicarp a Natural Coloring Allternative in Bread author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


TecnoLógicas

Print version ISSN 0123-7799On-line version ISSN 2256-5337

Abstract

LUENGAS C., Lely A.  and  TOLOZA, Daissy C.. Frequency and Spectral Power Density Analysis of the Stability of Amputees Subjects. TecnoL. [online]. 2020, vol.23, n.48, pp.3-18. ISSN 0123-7799.  https://doi.org/10.22430/22565337.1453.

Transtibial amputations reduce the amount of somatosensorial information available to the central nervous system. This muscular and physiological loss involving the ankle joint reduces the muscle strength of the legs, which affects the balance and mobility of those who suffer from it. As lower limbs are used less, muscle hypertrophy occurs and the muscle strength deficit increases. Additionally, transtibial amputees should adapt themselves to the lack of a physiological joint between the ankle and the plantar flexor muscles, which are essential for an adequate joint mobility, muscle strength, and active adjustment capacity of the prosthesis during quiet stance. Thus, the reduction of their muscle strength is associated with compromised balance. This study analyzed the Center of Pressure (COP) of a group of transtibial amputees to understand the behavior of their stability. A harmonic analysis of the stability signs of such amputees (prosthesis users) was examined in order to reveal the behavior of their center of pressure. We analyzed two groups of 9 participants each: non-amputee control group and amputees. We used a periodogram, via Welch’s method, to find the frequential components of the center of pressure under each foot in order to characterize and detect them and understand the differences between the study groups. This paper presents the harmonic analysis of a nonstationary signal and supports the idea that the latter is an important tool for stability analysis. The results indicate that amputations have an influence on Power Spectral Density (DEP) because there is a difference in frequencies between the amputated and the non-amputated limb (greater oscillation on the amputated side, antero-posterior axis). The same situation occurred between the study groups (greater power in amputees under all testing conditions).

Keywords : Transtibial amputation; biomechanics; center of pressure; power spectral density; system stability.

        · abstract in Spanish     · text in Spanish     · Spanish ( pdf )