SciELO - Scientific Electronic Library Online

 
vol.23 número49Consideraciones para la fabricación de pantallas de protección facial por impresión 3D - Covid19Influencia de los modelos de turbulencia, densidad, cambio de fase e interfaz en la simulación numérica de un termosifón cerrado de dos fases índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


TecnoLógicas

versión impresa ISSN 0123-7799versión On-line ISSN 2256-5337

Resumen

VALDERRAMA-HINCAPIE, Sarah et al. Beta, gamma and High-Frequency Oscillations characterization for targeting in Deep Brain Stimulation procedures. TecnoL. [online]. 2020, vol.23, n.49, pp.13-34. ISSN 0123-7799.  https://doi.org/10.22430/22565337.1564.

Deep Brain Stimulation (DBS) has been successfully used to treat patients with Parkinson’s Disease. DBS employs an electrode that regulates the oscillatory activity of the basal ganglia, such as the subthalamic nucleus (STN). A critical point during the surgical implantation of such electrode is the precise localization of the target. This is done using presurgical images, stereotactic frames, and microelectrode recordings (MER). The latter allows neurophysiologists to visualize the electrical activity of different structures along the surgical track, each of them with well-defined variations in the frequency pattern; however, this is far from an automatic or semi-automatic method to help these specialists make decisions concerning the surgical target. To pave the way to automation, we analyzed three frequency bands in MER signals acquired from 11 patients undergoing DBS: beta (13-40 Hz), gamma (40-200 Hz), and high-frequency oscillations (HFO - 201-400 Hz). In this study, we propose and assess five indexes in order to detect the STN: variations in autoregressive parameters and their derivative along the surgical track, the energy of each band calculated using the Yule-Walker power spectral density, the high-to-low (H/L) ratio, and its derivative. We found that the derivative of one parameter of the beta band and the H/L ratio of the HFO/gamma bands produced errors in STN targeting like those reported in the literature produced by image-based methods (<2 mm). Although the indexes introduced here are simple to compute and could be applied in real time, further studies must be conducted to be able to generalize their results.

Palabras clave : Deep Brain Stimulation; microelectrode recording; biomedical signal processing; Parkinson’s disease; subthalamic nucleus.

        · resumen en Español     · texto en Inglés     · Inglés ( pdf )