SciELO - Scientific Electronic Library Online

 
vol.20 número49Stiffness of a granular base under optimum and saturated water contentsAnalysis of power system vulnerability considering uncertainty in variables using fuzzy logic type 2 índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Tecnura

versão impressa ISSN 0123-921X

Resumo

CAMACHO VELASCO, Ariolfo; VARGAS GARCIA, César Augusto  e  ARGUELLO FUENTES, Henry. Un estudio comparativo de algoritmos de detección de objetivos en imágenes hiperespectrales aplicados a cultivos agrícolas en Colombia. Tecnura [online]. 2016, vol.20, n.49, pp.86-99. ISSN 0123-921X.  http://dx.doi.org/10.14483/udistrital.jour.tecnura.2016.3.a06.

Contexto: Las imágenes hiperespectrales (HSI) contienen información en alta resolución espectral, en cientos de bandas contiguas sobre un rango del espectro electromagnético. Se ha tomado ventaja de la información espectral mediante algoritmos de clasificación, detección de cambios, de anomalías o detección de objetivos. Específicamente, en las dos últimas décadas han sido propuestos diferentes algoritmos para detectar objetivos en HSI. Sin embargo, encontrar un algoritmo de detección con un desempeño óptimo para diferentes escenarios y objetivos, aún es materia de investigación, debido a la alta variabilidad espectral y diversidad de escenarios del mundo real. Objetivo: La presente investigación realiza un estudio comparativo de algoritmos de detección de objetivos en imágenes hiperespectrales aplicados a la agricultura colombiana. Método: Las evaluaciones se realizaron sobre 20 HSI reales adquiridas por el sensor satelital Hyperion y 6 HSI sintéticas con diferentes niveles de ruido. En el desarrollo de la investigación se implantaron 5 objetivos sintéticos; y se extrajeron más de 115 firmas espectrales reales, 11 de ellas fueron usadas como objetivo en la evaluación de los algoritmos, permitiendo la caracterización de 5 cultivos agrícolas del nororiente colombiano en 5 áreas de estudio diferentes. Los resultados muestran que el algoritmo de Estimación de Coherencia Adaptativo (ACE) presenta un mejor desempeño con probabilidades de detección PD > 90% para diferentes escenarios y objetivos de tipo agrícola, tanto en imágenes sintéticas como reales. Conclusiones: En aplicaciones de detección de objetivos en HSI, es crítico encontrar un algoritmo que presente un rendimiento óptimo para diferentes escenarios y objetivos, debido a la variabilidad espectral generada por las diferentes condiciones geográficas de Colombia. Por otra parte, este trabajo permite mostrar que es posible realizar nuevas investigaciones y aplicaciones a nivel nacional tomando ventaja de las técnicas de imágenes hiperespectrales y algoritmos de detección espectral; específicamente en el sector de la agricultura colombiana.

Palavras-chave : Algoritmo de Detección de Objetivos; Imágenes hiperespectrales; Propiedades Espectrales de la vegetación; Sensado Remoto.

        · resumo em Inglês     · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons