SciELO - Scientific Electronic Library Online

 
vol.21 número52Further compression of focal plane array in compressive spectral imaging architecturesMultichannel assignment using K-Means in cognitive radio networks índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Tecnura

versão impressa ISSN 0123-921X

Resumo

MEDINA ROJAS, Ferley; ARGUELLO FUENTES, Henry  e  GOMEZ SANTAMARIA, Cristina. A quantitative and qualitative performance analysis of compressive spectral imagers. Tecnura [online]. 2017, vol.21, n.52, pp.53-67. ISSN 0123-921X.  http://dx.doi.org/10.14483/udistrital.jour.tecnura.2017.2.a04.

Abstract Context: Spectral images (SI) contain spatial-spectral information about a scene arranging in a data cube, which often comprises a significant amount of data. However, traditional (SI) systems acquire data ignoring the high correlation between the measurements and the samples are redundant. Compressive spectral imaging systems compress spectral data in the acquisition step, so it allows reducing redundancy and the data amount. Recently, several spectral imaging systems have become available, providing new functionality for users and opening up the field to a wide array of new applications. For instance, the CASSI, SCSI, SSCS, and HYCA systems are four of the most outstanding systems. Methods: Some review works have provided comprehensive surveys of the available technologies and have shown how the new capabilities of spectral imaging approaches can be utilized. However, selecting a specific architecture requires a quantitative and qualitative comparison of these systems in the same scenarios. Results: This paper analyzes the qualitative and quantitative performance of these four compressive spectral imaging systems to evaluate them in the same scenarios. For that, the architectures are modeled as a system of linear equations; then, image reconstructions are accomplished through the same optimization approach, transmittance, coded aperture, and shot numbers. Conclusion: Results show that the performance of the SSCSI system attains better quality reconstruction in terms of PSNR.

Palavras-chave : sampling matrix; compressive sampling architectures; spectral image.

        · resumo em Espanhol     · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons