SciELO - Scientific Electronic Library Online

 
vol.24 número66Evaluación de propiedades mecánicas de compuestos manufacturados a partir de contenedores de Tetra Pak® recicladosFusión de imágenes hiperespectrales y multiespectrales basado en un modelo de escacez no local centralizado de mapas de abundancias índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Tecnura

versión impresa ISSN 0123-921X

Resumen

MONTOYA, Oscar Danilo et al. Hybrid Optimization Strategy for Optimal Location and Sizing of DG in Distribution Networks. Tecnura [online]. 2020, vol.24, n.66, pp.47-61.  Epub 18-Dic-2020. ISSN 0123-921X.  https://doi.org/10.14483/22487638.16606.

Objective:

This paper presents a hybrid optimization methodology for the optimal location and sizing of distributed generators (DG) in electrical distribution networks. We propose a mixed-integer nonlinear problem (MINLP) model for the mathematical formulation, whose objective function is the minimizing of power losses due to the Joule effect in conductors. The constraints we considered include active and reactive power balance, voltage regulation, percentage of penetration of DG into the distribution network, and the total amount of DG allowed in such network.

Methodology:

To solve the MINLP model, we employed a master-slave strategy that uses the Chu-Beasley genetic algorithm (CBGA) and the optimal power flow (OPF) model as the master and slave algorithms, respectively. This hybrid technique helps reduce the complexity of the MINLP model by eliminating binary variables through the master algorithm and then solving the resulting nonlinear problem (NLP), which corresponds to the OPF model, and uses a classical interior-point method available in MATLAB's fmincon toolbox.

Results:

We tested the efficiency and robustness of the proposed methodology in 33- and 69-node radial distribution networks. The results show its high performance in terms of power loss reduction and final sizing of DG.

Conclusions:

The results obtained in the test systems under analysis reveal that there is a direct and proportional relationship between technical losses, the percentage of distributed generation penetration, and the number of generators available.

Palabras clave : Chu-Beasley genetic algorithm; distributed generation; hybrid optimization; master-slave algorithm; optimal power flow; radial distribution networks.

        · resumen en Español     · texto en Inglés     · Inglés ( pdf )