Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales
Print version ISSN 0370-3908
Abstract
PRIAS-BARRAGAN, Jhon Jairo; ECHEVERRY-MONTOYA, Narly Andrea and ARIZA-CALDERON, Hernando. Fabrication and characterization of activated carbon and carbon nanoplatelets from Guadua angustifolia Kunth for their application in electronics. Rev. acad. colomb. cienc. exact. fis. nat. [online]. 2015, vol.39, n.153, pp.444-449. ISSN 0370-3908. https://doi.org/10.18257/raccefyn.139.
We report the fabrication and characterization of activated carbon and carbon nanoplatelets obtained from Guadua angustifolia Kunth for their application in flexible electronics. The activated carbon samples were obtained in a controlled pyrolysis system under nitrogen atmosphere at a temperature of 573 K for one hour, and the nanoplatelets at 973 K for one hour. The charcoal was activated using potassium hydroxide and sodium hydroxide at an activation temperature of 973 K. The nanoplatelets samples were obtained by mechanical grinding in a mortar, and cavitation for six hours. The activated carbon samples were characterized by adsorption isotherms, and we found a surface area of 408.0 m2/g and 308.9 m2/g for the carbon activated with sodium hydroxide and potassium hydroxide, respectively. X-ray diffraction was performed and the presence of electrolytes remaining from the activation process was determined. Scanning electronic microscopy images showed the porous carbon structure and allowed to identify the presence of the remaining electrolyte salts. Cyclic voltammetry was performed and a maximum specific capacitance of 111 F/g was determined. The activated carbon was used in the manufacture of a flexible supercapacitor, achieving a capacitance of 7.9 mF. The nanoplatelets were characterized by X-ray diffraction, scanning electronic microscopy, transmission electron microscopy and Fourier transform infrared spectroscopy techniques, corroborating the presence of oxidized graphite nanoplatelets with thicknesses below 13 nm; using current-voltage curves we found a nonlinear behavior attributed to the percolation effects of the electric charge carriers. These results suggest that activated carbon and carbon nanoplatelets samples are excellent candidates for electronic applications.
Keywords : Activated carbon; Guadua angustifolia Kunth; nanoplatelets; flexible electronics.