SciELO - Scientific Electronic Library Online

 
vol.45 número177Propiedades de sistema complejo en la propagación de la pandemia del COVID-19Patrones de actividad de mamíferos medianos y grandes en dos ecosistemas de sabana de los Llanos colombianos índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales

versión impresa ISSN 0370-3908

Resumen

RODRIGUEZ-PAEZ, J. E.. The semiconductor-cell membrane nano-biointerface: Physicochemical phenomena to consider in explaining the nanotoxicity and antifungal capacity of zinc oxide nanoparticles. Rev. acad. colomb. cienc. exact. fis. nat. [online]. 2021, vol.45, n.177, pp.1053-1070.  Epub 12-Feb-2022. ISSN 0370-3908.  https://doi.org/10.18257/raccefyn.1513.

The application of nanotechnology, specifically of nanoparticles (NPs), in fields such as medicine, environmental remediation, and agriculture, requires knowledge and understanding of the interactions occurring between biological systems and NPs. It is, therefore, necessary to undertake the study of the nano-biointerface. Based on the results obtained in studies on the antifungal and antibacterial capacity of the zinc oxide nanoparticles (ZnO-NPs), a review is presented of certain physicochemical phenomena that might occur at the semiconductor-cell membrane interface and that would allow explaining the action of these NPs. Specifically, analysis was made of the effects on a biological system of entropic-type interactions, the semiconductor nature of ZnO and the existence of specific defects in the solid. Based on these physicochemical processes, qualitative models were structured of mechanisms that would explain the effects of the presence of ZnO-NPs on cultures of various fungi (Omphalia sp., Colletotrichum sp., and Phoma sp.), their growth inhibition, and the alteration of their ultrastructure, as well as on Escherichia coli bacteria, whose growth was inhibited up to ~70% reaching an MIC50 of 30.40 |ig/mL without incidence of UV radiation.

Palabras clave : Nano-biointerface; Entropic interactions; Semiconductor; Point defects; Pathogens.

        · resumen en Español     · texto en Español     · Español ( pdf )