SciELO - Scientific Electronic Library Online

 
vol.39 issue4Implementation of a method using tritiated substrates as a diagnostic tool for OCTN2 deficiency author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Colombia Médica

On-line version ISSN 1657-9534

Abstract

CAMARGO, Mauricio; SOTO-MARIN, María Isabel; ZEA, Olga  and  SAAVEDRA, Domingo. Imatinib treatment and pharmacogenotype CYP3A4 in relation with the clonal expansion Ph(+) in chronic myeloid leukemia (CML). Colomb. Med. [online]. 2008, vol.39, n.4, pp.314-322. ISSN 1657-9534.

Introduction: Imatinib is an inhibitor of the BCR-ABL tyrosine-kinase that has dramatically changed the treatment of patient with Chronic myeloid leukemia (CML) positive for the Philadelphia chromosome (Ph+). This compound is mainly metabolized by the cytochrome CYP3A4 enzyme, coded by a gene with individual variations that could interfere with the effectiveness of the treatment, due to the fact that particular single nucleotide polymorphisms (SNPs), i.e., CYP3A4*1B y CYP3A4*2, have shown to exert a significant influence on the metabolic activity of this pharmacologically important enzyme. Objective: Evaluate the frequency of pharmacogenetically important polymorphisms in the CYP3A4 gen in a Colombian population of patients with CML being treated with this novel drug (Imatinib), in parallel with a control population of 164 healthy individuals. Correlate the evolution of the clonal expansion Ph(+) with the presence of these SNPs and the length of treatment. Methodology: PCR-RFLP genotyping for the CYP3A4* 1B y CYP3A4*2 SNPs. RBHG replication banding for the evaluation of the presence of the Ph(+) markers in spontaneous mitotic blasts. Results: A positive cytogenetic response and/or correlation was detected between the length of the imatinib treatment and a reduction in the percentage of Ph(+) blasts. Genotyping indicate that CYP3A4*1B polymorphism does no affect the cytogenetic response in imatinib treated Ph(+) patients, and that the pharmacorelevant CYP3A4*2 SNP is not present in this population of patients and controls (N=194). Conclusions: The pharmacogenotype CYP3A4*2 (exon 7) does not affect the induced positive cytogenetic response triggered by the imatinib treatment, that generally induces a reduction in Ph(+) blasts en relation with the duration of the treatment.

Keywords : Imatinib; Chronic myeloid leucemia; CML; CYP3A4; Philadelphia chromosome; Pharmacogenetics; SNPs.

        · abstract in Spanish     · text in Spanish     · Spanish ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License