SciELO - Scientific Electronic Library Online

 
vol.13 issue25Factors determining the socio-ecological resilience for andean mountainsContributions in formation in materials science and engineering author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Ingenierías Universidad de Medellín

Print version ISSN 1692-3324

Abstract

CORRALES, David Camilo et al. Early warning system for coffee rust disease based on error correcting output codes: a proposalSistema de alerta temprana para la roya en el café basado en códigos de salida de corrección de error: una propuesta. Rev. ing. univ. Medellín [online]. 2014, vol.13, n.25, pp.57-64. ISSN 1692-3324.

Los productores de café colombianos han sufrido severas consecuencias por la Roya desde que fue reportada por primera vez en el país en el año 1983. Recientemente, investigadores de aprendizaje automático han intentado predecir la roya a través de clasificadores como: arboles de decisión, máquinas de vector de soporte, clasificadores no determinísticos y redes bayesianas, pero se ha demostrado teórica y empíricamente que la combinación de múltiples clasificadores puede mejorar sustancialmente el rendimiento en la clasificación. En este sentido es propuesto un sistema de alerta temprana para la roya en el café, basado en códigos de salida de corrección de error y máquinas de vector de soporte para calcular las funciones binarias de la densidad de planta, el nivel de sombra, la acidez del suelo, la intensidad de lluvia en la última noche, y en últimos días, con humedad relativa.

Keywords : roya; sistema de alerta temprana; ECOC; SVM; Codeword.

        · abstract in English     · text in English     · English ( pdf )