Services on Demand
Journal
Article
Indicators
Cited by SciELO
Access statistics
Related links
Cited by Google
Similars in SciELO
Similars in Google
Share
Revista Ingenierías Universidad de Medellín
Print version ISSN 1692-3324
Abstract
CORRALES, David Camilo et al. Early warning system for coffee rust disease based on error correcting output codes: a proposalSistema de alerta temprana para la roya en el café basado en códigos de salida de corrección de error: una propuesta. Rev. ing. univ. Medellín [online]. 2014, vol.13, n.25, pp.57-64. ISSN 1692-3324.
Los productores de café colombianos han sufrido severas consecuencias por la Roya desde que fue reportada por primera vez en el país en el año 1983. Recientemente, investigadores de aprendizaje automático han intentado predecir la roya a través de clasificadores como: arboles de decisión, máquinas de vector de soporte, clasificadores no determinísticos y redes bayesianas, pero se ha demostrado teórica y empíricamente que la combinación de múltiples clasificadores puede mejorar sustancialmente el rendimiento en la clasificación. En este sentido es propuesto un sistema de alerta temprana para la roya en el café, basado en códigos de salida de corrección de error y máquinas de vector de soporte para calcular las funciones binarias de la densidad de planta, el nivel de sombra, la acidez del suelo, la intensidad de lluvia en la última noche, y en últimos días, con humedad relativa.
Keywords : roya; sistema de alerta temprana; ECOC; SVM; Codeword.