SciELO - Scientific Electronic Library Online

 
vol.17 número2A multivariate statistical approaches on physicochemical characteristics of ground water in and around Nagapattinam district, Cauvery deltaic region of Tamil Nadu, IndiaAn approximate method for estimating nutrient loads in drainage water from a coastal irrigated area índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Earth Sciences Research Journal

versión impresa ISSN 1794-6190

Resumen

DELBARI, Masoomeh; MOTLAGH, Masoud Bahraini  y  AMIRI, Meysam. Spatio-temporal variability of groundwater depth in the Eghlid aquifer in southern Iran. Earth Sci. Res. J. [online]. 2013, vol.17, n.2, pp.105-114. ISSN 1794-6190.

Groundwater is the main water source for domestic and agricultural use in Eghlid, a city located in Fars province in southern Iran. Here, spatial and temporal changes in groundwater depth were monitored by using geostatistical methods at 41 observation wells in Eghlid during the wet and dry seasons of 1997, 2003 and 2010. Experimental semivariograms were calculated and modeled with the GS+ (Gamma Design Software, Plainwell, Michigan USA),and groundwater depth was interpolated by using the ordinary kriging (OK), simple kriging (SK) and inverse distance weighting (IDW) methods within the GIS environment. Moreover, groundwater depth fluctuations over 13 years (from 1997 to 2010) were calculated and mapped for wet and dry periods. The groundwater depth in the Eghlid aquifer exhibited a strong spatial correlation that followed a spherical model for three years. However, the spatial correlation distance was larger for both seasons in 1997 (greater than 27 km) than in 2003 (22 to 27 km) and 2010 (23 to 25 km). The cross-validation results indicated that OK resulted in the lowest root mean square error (RMSE) and mean error (ME) and was the most appropriate method for interpolating groundwater depth. Therefore, OK was used to map the spatial distribution of the groundwater depth over the study area. The resulting maps indicated that the spatial variability of groundwater depth was greater during the wet season than during the dry season over three years. In addition, changes in the depth to groundwater occurred more slowly during the wet seasons than during the dry seasons. Furthermore, the ground water depth decreased slightly from 1997 to 2003 and decreased considerably (2-13 m) from 2003 to 2010. Moreover, the decrease in the groundwater depth was more notable in the central to west and southern regions of the aquifer. Thus, these regions are critical and should be managed carefully to optimize groundwater resource exploitation.

Palabras clave : Estimation; geostatistics; groundwater depth; spatial variation; GIS.

        · resumen en Español     · texto en Inglés     · Inglés ( pdf )