SciELO - Scientific Electronic Library Online

 
vol.10 issue1Hydrometallurgical valuing of cathodic and anodic materials of used rechargeable batteries from the Ni-MH TypeFatty acid of functional mushroom pleurotus ostreatus grown in agro-industrial solid waste author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Producción + Limpia

Print version ISSN 1909-0455

Abstract

MONTOYA CARVAJAL, Juan Fernando et al. Synthesis and characterization of the FeCr2O4 spinel. Rev. P+L [online]. 2015, vol.10, n.1, pp.64-72. ISSN 1909-0455.

Introduction. Compounds with spinel structures are known for having cations in their tetrahedral and octahedral structures, a fact that gives them versatility for technological applications given their physical and chemical properties (Ziemniak,Anovitz,Castelli y Porter,2007,1474-1492). Ferrites and chromites are especially interesting due to their diverse physical properties and their consequent versatility for technological applications (Gopal y Spaldin, 2006, 094418-9; Singh y Rhee, 2010, 1233-1237). Objective. Synthetize, with the traditional ceramic method, the FeCr2O4 spinel and identify its main properties taking its structural, colorimetric and magnetic characterization as a base. Materials and methods. By the use of reactions in the solid state at high temperatures, by means of the iron and chromium oxides (Cr2O3 and Fe3O4) at fixed proportions as precursors, the FeCr2O4 compound with a spinel type structure was synthetized. For the synthesis of different temperatures,a characterization of the material obtained was performed by means of X ray diffraction (DRX), UV-VIS-NIR spectroscopy, thermal analysis (DTA/TGA) and the magnetic susceptibility. Results. The results obtained agree with the reports and it can be seen that the changes in the reflectance spectrums are correlated with the base identified, with the crystallinity degree and with the magnetic response. Conclusions. The FeCr2O4 spinel was satisfactorily synthetized by the use of the traditional method for temperatures between 800 and 1300 °C, and samples with structural and optically stability were obtained.

Keywords : Spinel; ceramic pigments; UV-VIS-NIR spectroscopy; magnetic properties.

        · abstract in Spanish | Portuguese     · text in Spanish     · Spanish ( pdf )